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Abstract
1.	 Disease	models	typically	focus	on	temporal	dynamics	of	infection,	while	often	ne-
glecting	environmental	processes	that	determine	host	movement.	In	many	systems,	
however,	temporal	disease	dynamics	may	be	slow	compared	to	the	scale	at	which	
environmental	 conditions	 alter	 host	 space-	use	 and	 accelerate	 disease	
transmission.

2.	 Using	a	mechanistic	movement	modelling	approach,	we	made	space-	use	predic-
tions	of	a	mobile	host	(elk	[Cervus Canadensis]	carrying	the	bacterial	disease	brucel-
losis)	 under	 environmental	 conditions	 that	 change	daily	 and	 annually	 (e.g.,	 plant	
phenology,	snow	depth),	and	we	used	these	predictions	to	infer	how	spring	phenol-
ogy	influences	the	risk	of	brucellosis	transmission	from	elk	(through	aborted	foe-
tuses)	to	livestock	in	the	Greater	Yellowstone	Ecosystem.

3.	 Using	data	from	288	female	elk	monitored	with	GPS	collars,	we	fit	step	selection	
functions	(SSFs)	during	the	spring	abortion	season	and	then	implemented	a	master	
equation	approach	 to	 translate	SSFs	 into	predictions	of	daily	elk	distribution	 for	
five	plausible	winter	weather	scenarios	(from	a	heavy	snow,	to	an	extreme	winter	
drought	year).	We	predicted	abortion	events	by	combining	elk	distributions	with	
empirical	estimates	of	daily	abortion	rates,	spatially	varying	elk	seroprevelance	and	
elk	population	counts.

4.	 Our	results	reveal	strong	spatial	variation	in	disease	transmission	risk	at	daily	and	
annual	scales	that	is	strongly	governed	by	variation	in	host	movement	in	response	
to	spring	phenology.	For	example,	in	comparison	with	an	average	snow	year,	years	
with	 early	 snowmelt	 are	 predicted	 to	 have	 64%	 of	 the	 abortions	 occurring	 on	
feedgrounds	shift	 to	occurring	on	mainly	public	 lands,	and	 to	a	 lesser	extent	on	
private	lands.

5. Synthesis and applications.	Linking	mechanistic	models	of	host	movement	with	dis-
ease	dynamics	 leads	 to	a	novel	bridge	between	movement	and	disease	ecology.	
Our	analysis	 framework	offers	new	avenues	for	predicting	disease	spread,	while	
providing	managers	 tools	 to	 proactively	 mitigate	 risks	 posed	 by	mobile	 disease	
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1  | INTRODUCTION

Epidemiological	 models	 have	 traditionally	 focused	 on	 temporal	 as-
pects	 of	 disease	 dynamics	 (Diekman,	 Hesterbeak,	 &	 Britton,	 2012;	
Keeling	&	Rohani,	2008),	with	 less	emphasis	on	 spatial	heterogene-
ity.	Transmission	is	often	determined	by	the	movements	of	hosts	and	
vectors,	 which	 are	 in	 turn	 influenced	 by	 environmental	 conditions.	
Yet,	 host	 movement	 is	 seldom	 linked	 to	 environmental	 conditions	
(Altizer,	Bartel,	&	Han,	2011;	Ostfeld,	Glass,	&	Keesing,	 2005).	This	
is	likely	because	of	the	human	focus	of	much	of	the	disease	ecology	
field,	and	because	movement	models	have	been	historically	difficult	to	
translate	into	mechanistic	predictions	of	animal	density	(Moorcroft	&	
Barnett,	2008)	or	spatially	structured	epidemiological	systems	(Keeling	
&	Rohani,	2002).	Incorporating	host	movement	into	disease	models	is	
particularly	 important	for	disease	systems	where	temporal	dynamics	
of	infection	and	transmission	act	over	a	longer	time-	scale	than	factors	
that	affect	host	movement	such	as	food	availability.

When	studies	do	explicitly	incorporate	spatial	heterogeneity,	dis-
ease	models	such	as	the	classic	susceptible–infected–recovered	(SIR)	
and	 related	models	 (Diekman	 et	al.,	 2012)	 tend	 to	make	 simple	 as-
sumptions	about	homogeneity	in	the	spatial	structure	of	the	landscape	
and	random	movement	of	hosts	and	vectors	(Keeling	&	Rohani,	2002).	
Nonetheless,	even	incorporating	a	relatively	simple	spatial	component	
into	disease	models	has	led	to	novel	predictions	of	disease	dynamics	
(Benavides,	Valderrama,	&	Streicker,	2016;	Riley,	2007).	For	example,	
Smith,	 Lucey,	Waller,	Childs,	 and	Real	 (2002)	employed	a	 stochastic	
spatial	model	to	quantify	spatial	variation	in	rabies	spread	and	found	
that	 large	rivers	act	as	semi-	permeable	barriers.	 In	this	case,	 includ-
ing	 the	 spatial	 component	 illuminated	how	 local	 transmission	based	
on	 host	movement	 and	 translocation	 of	 hosts	 by	 humans	 influence	
the	spread	of	rabies	(Smith	et	al.,	2002).	Further,	including	a	dispersal	
kernel,	based	simply	on	how	infectivity	decreases	with	distance,	has	
provided	the	baseline	for	spatial	models	of	foot-	and-	mouth	disease	to	
identify	how	control	efforts	should	be	applied	spatially	(Keeling,	2005).

The	 field	of	 animal	 ecology	has	 a	 long	history	of	 assessing	how	
environmental	conditions	drive	 individual	movement	and	population	
spatial	distribution	(Guisan	&	Zimmermann,	2000;	Manly,	McDonald,	
Thomas,	McDonald,	 &	 Erickson,	 2002).	 Species	 distribution	models	
(Elith	&	Leathwick,	2009)	such	as	the	resource	selection	function	(RSF;	
Manly	et	al.,	2002)	are	well-	established	and	have	been	used	to	answer	
a	plethora	of	applied	and	fundamental	questions.	The	RSF	is	typically	
used	to	predict	distributions	based	on	static	landscape	variables	or	for	

specific	time	periods	(e.g.,	Losier	et	al.,	2015),	but	such	models	do	not	
account	for	the	movement	process	between	habitats	as	habitat	quality	
changes	through	time	(Merkle	et	al.,	2016;	van	Moorter	et	al.,	2013).	
In	 response	 to	 such	 constraints,	 mechanistic	 movement	 modelling	
has	seen	recent	methodological	advances,	where	animal	space-	use	is	
now	viewed	as	a	pattern	that	is	“scaled-	up”	mechanistically	from	the	
movement	of	individuals	(Morales	&	Ellner,	2002).	Advances	in	mech-
anistic	movement	modelling	have	included	ecological	diffusion	models	
(Hefley,	Hooten,	Russell,	Walsh,	&	Powell,	2017;	Williams	et	al.,	2017),	
as	well	as	the	step	selection	function	(SSF;	Fortin	et	al.,	2005)	and	its	
translation	 into	 a	 probability	 density	 function	 of	 space	 use	 through	
stochastic	 simulations	 (Signer,	 Fieberg,	 &	Avgar,	 2017)	 or	 a	 master	
equation	 (Merkle,	 Potts,	 &	 Fortin,	 2017;	 Potts,	 Bastille-	Rousseau,	
Murray,	Schaefer,	&	Lewis,	2014).	These	statistical	methods	 identify	
the	mechanisms	 driving	 animal	movement,	 allowing	 a	more	 explicit	
assessment	of	the	influence	of	host	movements	on	disease	dynamics.

Despite	the	apparent	usefulness	of	mechanistic	movement	models	
to	 epidemiological	models,	 the	 two	 fields	 have	 only	 recently	 begun	
to	merge	 (Garlick,	Powell,	Hooten,	&	McFarlane,	2011;	Hefley	et	al.,	
2017).	 For	 instance,	Hefley	 et	al.	 (2017)	 use	 an	 ecological	 diffusion	
model	to	predict	spatio-	temporal	dynamics	of	chronic	wasting	disease	
in	white-	tailed	deer	(Odocoileus virginianus).	Yet,	their	model	does	not	
include	individual-	based	animal	movement	data	nor	temporally	vary-
ing	variables	 that	 affect	 deer	movement.	We	build	 on	 this	work	 by	
fitting	 a	 mechanistic	 movement	model	 of	 a	 mobile	 host	 monitored	
using	GPS	collars	and	then	use	a	master	equation	approach	to	predict	
space	use	under	environmental	scenarios	that	change	daily	and	annu-
ally	(e.g.,	plant	phenology,	snow	depth).	We	use	these	predictions	to	
mechanistically	link	how	weather	patterns	and	forage	availability	(e.g.,	
variability	in	snow	depth	and	date/rate	of	spring	vegetation	green-	up)	
influence	 spatio-	temporal	 variation	 in	 disease	 transmission	 risk,	 via	
host	movement.

We	assessed	spatio-	temporal	variation	in	brucellosis	transmission	
risk	from	elk	(Cervus canadensis)	to	domestic	cattle	(Bos taurus)	 in	the	
Greater	 Yellowstone	 Ecosystem	 (GYE).	 Brucellosis	 is	 transmitted	 by	
contact	with	 infected	 foetuses,	 placentas	 or	 birthing	 fluids	 (Cheville,	
McCullough,	&	Paulson,	1998);	thus,	it	can	be	transmitted	to	cattle	via	
comingling	with	elk	between	February	and	June,	peaking	March	to	May	
when	most	abortions	occur	(Cross	et	al.,	2015).	The	potential	transmis-
sion	risk	of	brucellosis	 to	cattle	 is	a	concern	for	 livestock	health,	 the	
sustainability	of	the	ranching	industry	and	tolerance	for	elk	in	the	GYE	
(Bienen	&	Tabor,	2006;	Kilpatrick,	Gillin,	&	Daszak,	2009).	Of	particular	

hosts.	More	broadly,	we	demonstrate	how	mechanistic	movement	models	can	pro-
vide	predictions	of	ecological	conditions	that	are	consistent	with	climate	change	but	
may	be	more	extreme	than	has	been	observed	historically.

K E Y W O R D S

Brucella abortus,	brucellosis,	Cervus canadensis,	disease	transmission,	elk,	habitat	selection,	
master	equation,	movement	ecology,	space-use,	spring	phenology,	step	selection	function
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concern	is	that	brucellosis	seroprevalence	in	elk	has	increased	in	some	
areas	of	the	GYE	over	the	 last	20	years	 (Cross	et	al.,	2010),	 resulting	
in	 localized	 increased	 risk	 of	 transmission	 to	 cattle.	 To	 limit	 comin-
gling	of	elk	and	cattle	during	the	brucellosis	transmission	period	in	the	
Wyoming	component	of	the	GYE,	winter	supplemental	feeding	of	elk	
is	employed	and	ends	between	February	and	May	during	the	abortion	
season	(Cross,	Edwards,	Scurlock,	Maichak,	&	Rogerson,	2007).

In	the	Mountain	West,	climate	change	is	contributing	to	decreased	
snowpack,	earlier	snowmelt,	and	an	increase	in	drought	frequency	and	
the	rate	of	spring	green-	up	(Bates,	Kundzewicz,	Wu,	&	Palutikof,	2008;	
Joyce,	Haynes,	White,	&	Barbour,	2005).	Plant	phenology	strongly	de-
termines	wild	ungulate	habitat	use	(Aikens	et	al.,	2017)	and	selection	
(Merkle	et	al.,	2016),	including	elk	in	our	study	area	(Jones	et	al.,	2014).	
To	 evaluate	 the	 influence	 of	 snow	depth	 and	vegetation	 phenology	
on	 brucellosis	 transmission	 risk,	 we	 predicted	 the	 spatio-	temporal	
distribution	of	abortion	events	across	five	winter	weather	scenarios:	
observed	low,	average	and	heavy	snow	years;	and	two	extreme	early	
snowmelt	or	winter	drought	scenarios.

2  | MATERIALS AND METHODS

Our	analysis	consisted	of	four	steps:	(1)	fit	SSFs	of	elk	movement	in	
spring	when	brucellosis	transmission	risk	is	high;	(2)	derive	elk	distri-
bution	by	employing	a	master	equation	approach	based	on	the	fitted	
SSFs	across	the	aforementioned	five	weather	scenarios;	(3)	multiply	
elk	distribution	predictions	by	adult	and	yearling	 female	elk	abun-
dance,	 seroprevelance,	 pregnancy	 rate	 and	 daily	 probability	 of	 an	
abortion	event	(Cross	et	al.,	2015);	and	(4)	contrast	the	distribution	
of	 brucellosis	 transmission	 risk	 across	 different	weather	 scenarios	
for	 public	 and	private	 lands,	which	 vary	 in	 the	 timing	of	 livestock	
use.

2.1 | Study area and GPS collar data

Elevations	 in	 the	 Wyoming	 component	 of	 the	 GYE	 range	 from	
1,700	m	 to	4,200	m.	 Land	ownership	 is	 a	mixture	of	private,	 state	
and	 local	 governments,	 Bureau	 of	 Land	 Management	 (BLM),	 U.S.	
Forest	Service	 (USFS),	U.S.	Fish	and	Wildlife	Service	 (USFWS)	and	
U.S.	 National	 Park	 Service	 property	 (NPS;	 Figure	1).	 Sagebrush	
(Artemisia	spp.)	communities	predominate	at	lower	elevations	(below	
2,300	m),	 and	 transition	 to	 herbaceous	 meadows	 and	 lodgepole	
pine	 (Pinus contorta),	Douglas	 fir	 (Pseudotsuga menziesii)	 and	aspen	
(Populus tremuloides)	forests	at	mid-	elevations	(2,300	m	to	2,900	m).	
Elevations	above	2,900	m	are	predominated	by	herbaceous	mead-
ows,	 and	 spruce	 (Picea engelmannii),	 subalpine	 fir	 (Abies lasiocarpa)	
and	whitebark	pine	(Pinus albicaulis)	forests.	The	regional	climate	is	
characterized	by	 long	cold	winters	and	 relatively	 short	warm	sum-
mers	(see	Jones	et	al.,	2014	for	details).

We	 used	 GPS	 collar	 data	 from	 288	 adult	 and	 yearling	 female	
elk	 captured	 on	 22	 feedgrounds	 (range:	 4–64	 individual	 elk	 per	
feedground)	from	2007	to	2014.	Each	individual	elk	was	monitored	
for	one	to	2	years.	Elk	were	captured	 in	corral	 traps	or	chemically	

immobilized	 from	 the	 ground	 with	 a	 dart	 containing	 0.01	mg/kg	
carfentanil	 (ZooPharm,	 Windsor,	 CO,	 USA)	 and	 0.1	mg/kg	 xyla-
zine	 (Vedco,	St.	Joseph,	MO,	USA),	and	antagonized	with	1	mg/kg	
naltrexone	 (ZooPharm,	Windsor,	CO,	USA)	and	2	mg/kg	 tolazoline	
(Lloyd	 Laboratories,	 Shenandoah,	 IA,	 USA).	Although	 collars	were	
programmed	 to	collect	 locations	every	30,	60	or	120	min,	we	 rar-
efied	the	data	to	one	location	every	four	hours	so	that	the	proba-
bility	of	moving	at	 least	250	m	 (the	coarsest	 resolution	of	our	GIS	
data)	was	>0.5.

2.2 | Derivation of animal distribution from a SSF

The	 SSF	 is	 a	 modelling	 approach	 equivalent	 to	 a	 biased	 corre-
lated	 walk	 for	 estimating	 resource	 selection	 by	mobile	 organisms	
(Duchesne,	Fortin,	&	Rivest,	2015).	The	general	form	of	the	SSF	is	
as	follows:

where	f(x|y,	s,	β)	is	the	conditional	probability	of	choosing	location	x,	
given	the	animal	came	from	location	y,	and	the	1:K	available	options	
s,	where	 s = {l0,	l1,	…,	lK}. Φ(x|y)	 is	 the	probability,	 in	 a	homogeneous	

(1)f(x|y, s,�)=
Φ(x|y)exp(Z(x) ⋅�)

∫lϵs Φ(l|y)exp(Z(l) ⋅�)dl

F IGURE  1 Study	area	in	western	Wyoming,	USA,	indicating	
the	matrix	of	landownership	and	the	locations	of	elk	supplemental	
feedgrounds.	Shading	represents	hillshade	of	elevation
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landscape,	of	moving	from	y	to	x.	Z	is	a	vector	of	environmental	covar-
iates,	and	β	is	a	vector	of	coefficients	denoting	the	strength	that	each	
of	the	environmental	covariates	in	Z	has	on	choice	of	s	options.	The	
denominator	acts	as	a	normalizing	constant,	ensuring	that	f(x|y,	s,	β)	is	
a	probability	density	function.

Predicting	 animal	 distribution	 from	 a	 SSF	 can	 be	 done	 through	
a	master	 equation	 approach,	where	 the	 population-	level	 probability	
of	use	is	derived	using	estimated	SSF	parameters	(Potts	et	al.,	2014).	
Given	a	landscape	of	grid	cells	(i.e.,	habitat	patches),	the	master	equa-
tion	gives	the	probability	density	of	a	population	at	some	time	t + Δt	as	
a	function	of	both	the	probability	density	at	time	t,	and	the	movement	
kernel.	Denoting	 the	probability	 that	 the	population	 is	 in	patch	x	at	
time	t by u(x,	t),	the	master	equation	is

where	f(x|y,	Ω,	γ,	β)	is	the	movement	kernel,	and	Ω	is	the	set	of	all	hab-
itat	patches	in	the	landscape.

At	every	iteration	of	the	master	equation,	the	movement	kernel	
is	 calculated	 as	 the	probability	 f(x|y,	Ω,	γ,	β)	 of	moving	 to	 location	
x	 (potential	 target	 patch)	 given	 being	 previously	 at	 y	 (the	 source	
patch),

Here,	Φ(x|y,	γ)	is	the	step	length	distribution	with	γ	indicating	the	func-
tional	form	of	the	distribution,	f(x,	y,	Ω,	β)	 is	the	fitted	SSF	denoting	
the	effect	of	the	environment	on	the	animal’s	movement	or	choice	of	a	
patch.	K	is	a	normalizing	constant	that	ensures	f(x|y,	Ω,	γ,	β)	integrates	
to	1	with	 respect	 to	x,	 and	γ	 is	a	vector	of	parameters	 for	 the	step	
length	distribution	(e.g.,	Weibull	distribution).

2.3 | SSF development

We	developed	and	fit	a	SSF	for	elk	movement	on	and	around	each	
feedground	 (i.e.,	 a	 feedground	 subpopulation)	 from	 the	day	 supple-
mental	feeding	ended	to	15	July	(when	brucellosis-	induced	abortion	
risk	is	predicted	to	be	nearly	zero;	Cross	et	al.,	2015).	We	fit	SSFs	sep-
arately	for	each	feedground	because	we	expected	each	subpopulation	
to	behave	differently	based	on	previous	analyses	(Jones	et	al.,	2014).	
For	each	four-	hour	step,	we	drew	10	potential	target	points	originat-
ing	from	the	known	source	point	by	simultaneously	sampling	step	and	
turning	angle	distributions	of	all	animals	in	the	subpopulation.	These	
10	potential	target	points	were	identified	as	available	and	compared	
to	the	used	target	step.

Our	 SSFs	 included	 the	 following	 variables	 hypothesized	 to	 in-
fluence	 elk	movement	 after	 supplemental	 feeding	 has	 ended:	 dis-
tance	 to	 any	 road	 (in	 km)	 including	highways	 and	 jeep	 trails	 (30	m	
resolution,	U.S.	Department	 of	 Commerce,	 Bureau	 of	 the	Census),	
elevation	(30	m,	U.S.	Geological	Survey	National	Elevation	Dataset),	
snow	depth	(1	km,	daily,	Snow	Data	Assimilation	System	[SNODAS]),	
aspect	(30	m,	ranging	from	−1	as	southerly	to	1	as	northerly	aspects),	
slope	 (30	m,	 in	degrees),	 terrain	position	 index	 (30	m,	ranging	from	
−50	as	valley	bottoms	to	50	as	ridgetops,	calculated	as	the	difference	

between	the	elevation	of	a	cell	and	the	mean	elevation	of	its	near-
est	 80	 surrounding	 cells),	 per	 cent	 tree	 canopy	 cover	 (30	m,	 2011	
National	 Land	 Cover	 Database),	 overall	 productivity	 or	 biomass	
of	 a	 habitat	 patch	 each	 year	 calculated	 as	 the	 annual	 integrated	
Normalized	 Difference	Vegetation	 Index	 (NDVI,	 250-	m	 resolution,	
MODIS	data;	Pettorelli	 et	al.,	 2005),	 and	 the	phenological	 stage	of	
a	habitat	patch	calculated	as	the	daily	NDVI	value	(scaled	between	
0	 and	1)	 of	 a	patch	 at	 the	 time	 the	 step	was	 taken	 (250	m,	 calcu-
lated	following	the	cleaning	and	smoothing	methods	of	Merkle	et	al.,	
2016;	Bischof	et	al.,	2012).

2.4 | Fitting the SSF

We	fit	an	SSF	 for	each	 feedground	subpopulation	using	conditional	
logistic	regression,	with	each	stratum	 identified	as	a	used	point	and	
its	paired	10	available	target	points.	To	reduce	bias	in	estimated	co-
efficients,	particularly	for	variables	that	are	strongly	selected	for,	we	
included	distance	(in	km)	between	the	source	and	target	points	as	a	
covariate	to	better	represent	heterogeneity	in	the	availability	domain	
at	 each	 step	 (Forester,	 Im,	 &	 Rathouz,	 2009).	 Because	 of	 temporal	
autocorrelation	 and	 a	 lack	 of	 independence	 within	 an	 individual’s	
movements,	we	calculated	robust	SE	and	95%	CI	of	parameters	using	
generalized	estimating	equations	 (Craiu,	Duchesne,	&	Fortin,	2008).	
All	strata	for	a	given	individual	and	year	were	assigned	a	unique	clus-
ter	in	the	SSFs.	There	was	no	collinearity	among	variables	within	fit-
ted	SSFs—Pearson	correlations	coefficients	were	<0.35,	and	variance	
inflation	factors	were	<2.5.	We	validated	the	robustness	of	SSFs	using	
fivefolds	 cross-	validation	 repeated	 100	 times,	 following	 the	 frame-
work	developed	by	Fortin	et	al.	(2009)	for	SSFs.

2.5 | Master equation parameters

We	 estimated	 the	 spatio-	temporal	 distribution	 of	 elk	 around	
feedgrounds	every	4	hr	(i.e.,	Δt)	on	a	500	m	grid	of	the	study	area	by	
translating	the	SSFs	for	each	feedground	subpopulation	into	a	master	
equation	of	space	use.	We	chose	a	larger	grid	than	the	250-	m	grid	as-
sociated	with	NDVI	data	to	reduce	computation	time	for	the	calcula-
tions.	We	derived	elk	distribution	from	the	day	supplemental	feeding	
ended	to	15	July,	using	feeding	end-	dates	and	NDVI	 (i.e.,	green-	up)	
data	for	2010,	2012	and	2014,	representing	a	low,	average	and	heavy	
snowfall	year,	respectively	(see	Appendix	S1	for	details).	We	also	de-
rived	elk	distribution	under	two	hypothetical	climate	change	scenarios	
where	spring	green-	up	started,	snow	melt	occurred,	and	supplemental	
feeding	ended	14	and	28	days	earlier	 than	 in	 the	 low	snow	year	of	
2010	(totalling	five	scenarios).

The	 starting	 distribution	 of	 elk	 was	 based	 on	 a	 fitted	 Weibull	
distribution	 of	 the	 distances	 that	 all	 elk	 GPS	 locations	 were	 from	
feedgrounds	 during	 the	 feeding	 season	 (January	 through	 April)	 for	
each	 feedground	 separately	 (Appendix	 S2).	 We	 specified	 the	 step	
length	 distribution	Φ(x|y,	 γ)	 as	 a	Weibull	 distribution	 (shape	=	0.88,	
scale	=	0.47)	 fitted	 from	 all	 observed	 step	 lengths.	 The	 observed	
turning	angle	distribution	was	not	included	in	the	master	equation	be-
cause	of	 the	 computational	 time	 and	 complexity	 involved.	To	verify	

(2)u(x, t+Δt)=
∑

y�Ω
f(x|y,Ω, �,�)u(y, t)

(3)f(x|y, ε, �,�)=K−1
Φ(x|y, �)f(x|y,Ω,�).
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this	 did	 not	 alter	 our	 results,	we	 refit	 our	 SSFs	without	 taking	 into	
account	 turning	 angle	 distribution	 when	 sampling	 availability	 and	
found	little	difference	in	the	estimated	coefficients.	A	separate	master	
equation	was	calculated	 for	each	 feedground	subpopulation	using	a	
domain Ω	of	25,600	pixels,	representing	a	40	km	radius	around	each	
feedground.	 We	 validated	 predictions	 of	 the	 master	 equation	 and	
tested	performance	by	 comparing	 (1)	mean	predicted	probability	 of	
elk	use	extracted	for	each	observed	elk	relocation	in	2010,	2012	and	
2014,	to	mean	predicted	probability	of	elk	use	extracted	for	random	
points	across	the	domain,	(2)	frequency	of	observed	GPS	collar	loca-
tions	falling	within	binned	quantiles	of	predicted	probability	of	elk	use	
and	(3)	the	expected	per	cent	of	locations	(i.e.,	residuals)	falling	within	
equal	bins	of	the	probability	of	use	broken	down	into	four	time	periods	
(Appendix	S5).

2.6 | Predicting disease transmission risk

To	translate	probability	of	elk	use	to	disease	transmission	risk,	we	cal-
culated	the	predicted	number	of	abortion	events	axt	per	500	m	pixel	x,	
per	time	step	t	(in	days),	for	each	of	our	five	scenarios	as

where	 u(x, t)	 is	 the	 daily	 predicted	 probability	 of	 elk	 use,	Nx	 is	 the	
number	of	female	adult	and	yearling	elk	counted	at	each	feedground	
(Appendix	S3),	Sx	is	the	average	brucellosis	seroprevelance	estimated	
on	 each	 feedground	 (Appendix	 S3),	 y	 is	 a	 mean	 pregnancy	 rate	 of	
86.8%	 estimated	 based	 on	 ultrasonography	 of	 871	 adult	 and	 year-
ling	 female	elk	 in	winter	across	all	 feedgrounds	 from	1995	to	2012	
(Wyoming	Game	and	Fish	Department,	Unpubl.	data),	and	p(at)	is	the	
predicted	daily	probability	of	aborting	given	an	individual	is	seroposi-
tive	and	pregnant	(empirically	estimated	from	Cross	et	al.,	2015).	The	
predicted	number	of	abortion	events	axt	per	500	m	pixel	was	calcu-
lated	 for	each	subpopulation	separately	and	 then	summed	together	
across	the	entire	study	area.

3  | RESULTS

Mean	date	when	supplemental	feeding	ended	across	all	feedgrounds	
was	21	March	(SD	=	22	days)	in	2010,	26	March	(SD	=	21)	in	2012	and	
12	April	(SD	=	25)	in	2014,	representing	>3-	week	variation	from	low	
to	heavy	 snowfall	 years.	After	elk	 left	 feedgrounds,	 they	 tended	 to	
select	habitat	patches	that	were	on	south	facing	gentle	slopes,	farther	
away	from	roads,	at	higher	elevations,	with	higher	annual	integrated	
NDVI	 (i.e.,	surrogate	for	patch	quality	or	biomass),	with	higher	daily	
NDVI	(i.e.,	surrogate	for	phenology	stage),	with	lower	canopy	cover,	
and	 with	 a	 higher	 terrain	 position	 index	 (i.e.,	 selecting	 ridges	 over	
valleys).	 Nevertheless,	 there	 was	 variation	 in	 parameter	 estimates	
among	feedground	subpopulations	(Figure	2).	Our	SSFs	were	robust	
to	 k-	folds	 cross-	validation,	with	 good-	to-	excellent	 predictive	 ability	
depending	on	feedground	subpopulation	(Appendix	S4).

Using	 the	 SSF	 for	 each	 feedground	 subpopulation,	 we	 pre-
dicted	 the	 probability	 of	 elk	 use	 per	 500	m	 pixel	 per	 day	 across	

the	 five	weather	scenarios.	Based	on	three	validation	procedures,	
our	model	predicted	elk	GPS	collar	relocation	data	well	(Appendix	
S5).	The	predicted	number	of	abortion	events	per	500	m	pixel,	per	
day	across	the	landscape	ranged	from	0	to	a	maximum	of	0.03.	We	
estimated	 that	 c.	 712	 abortion	 events	 occurred	 per	 year	 across	
the	study	area.	Due	to	a	combination	of	elk	density	and	brucello-
sis	 seroprevelance,	 the	 number	 of	 cumulative	 abortions	 per	 year	
varied	widely	 among	 feedground	 subpopulations.	The	most	 abor-
tions	occurred	on	and	around	the	National	Elk	Refuge,	Gros	Ventre,	
and	Horse	Creek	 feedgrounds	 (217,	77	and	60,	 respectively),	and	
the	 least	 occurred	 on	 and	 around	 the	 Finnegan	 and	 Fall	 Creek	
feedgrounds	 (6	and	7,	 respectively;	Appendix	S6).	Most	abortions	
occurred	on	USFS	lands	and	there	was	considerable	variation	in	the	
spatial	 distribution	of	brucellosis	 transmission	 risk	 among	 scenar-
ios	 (See	 Figure	3	 for	 an	 example).	 In	 general,	 during	 heavy	 snow	
years,	elk	used	feedgrounds	later	in	the	season,	concentrating	bru-
cellosis	 transmission	 risk	 on	 feedgrounds.	 In	 contrast,	 during	 low	
snow	years,	and	scenarios	where	supplemental	feeding	ended,	and	

(4)axt = u(x, t)×Nx × Sx × y× p(at)

F IGURE  2 Standardized	coefficient	estimates	(with	95%	
CI	denoted	by	lines)	for	step	selection	functions	fit	for	elk	
subpopulations	(n = 288	individuals)	occurring	across	22	feedgrounds	
in	Wyoming	during	spring,	2007–2014.	Variables	included	were	
terrain	position	index	(TPI),	snow	depth	(Snow),	slope,	per	cent	tree	
cover	(%	cover),	daily	NDVI	value	(NDVI),	integrated	NDVI	(INDVI),	
elevation	(Elev),	distance	to	road	(distRoad)	and	aspect
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green-	up	 occurred,	 up	 to	 4	weeks	 earlier	 in	 the	year,	 elk	 left	 the	
feedgrounds	 earlier,	 spreading	 abortions	 more	 widely	 across	 the	
landscape	(Figure	3).

We	predicted	that	during	the	average	snow	year	of	2012,	c. 307 
(43%)	abortions	occurred	on	USFS	lands,	234	(33%)	within	2.5	km	of	
feedgrounds,	84	(12%)	on	private	land,	30	(3%)	on	BLM	lands,	49	(7%)	
on	USFWS/NPS	 lands	 and	 <9	 (1%)	 occurred	 across	 state	 and	 local	
government	lands	(Appendix	S7).	However,	these	proportions	varied	
among	the	five	weather	and	supplemental	 feeding	end-	date	scenar-
ios.	 From	 a	 heavy	 snow	year	 to	 a	 28-	day	 early	 snowmelt	 or	winter	
drought	year,	the	number	of	abortions	on	feedgrounds	decreased	by	
64%	 (from	302	 to	108),	whereas	 the	number	of	abortions	on	USFS	
increased	by	85%	(from	221	to	411).	Abortions	on	private	lands	only	
slightly	decreased	from	97	to	96	and	abortions	on	USFWS/NPS	lands	
only	slightly	increased	from	52	to	54.	Collectively,	these	results	sug-
gest	 that	 as	 elk	 leave	 feedgrounds	 earlier	 during	 early	 snowmelt	 or	
winter	drought	years,	abortions	occurred	more	on	USFS	lands	without	
detectible	change	on	other	land	ownership	types	(Figure	4).

Changes	in	the	spatial	distribution	of	elk	abortions	were	more	pro-
nounced	earlier	 in	 the	abortion	season	 (March	and	April),	where	we	
predicted	the	majority	of	elk	abortions	to	occur	on	feedgrounds	during	
heavy	snow	years,	and	the	majority	of	abortions	to	occur	on	USFS	lands	
during	early	snowmelt	and	winter	drought	years	(Figure	5;	Appendix	
S7).	Aune,	Rhyan,	Russell,	Roffe,	and	Corso	(2012)	reported	that	bru-
cellosis	can	persist	in	the	environment	around	a	foetus	up	to	26	days	
post-	abortion.	Because	most	grazing	allotments	on	USFS	lands	adja-
cent	to	elk	feedgrounds	open	on	15	June,	19	May	can	be	considered	
the	cut-	off	 for	abortions	with	a	high	 risk	of	brucellosis	 transmission	
from	elk	to	cattle.	After	19	May	during	the	average	snow	year,	c. 64 
abortions	(9%	of	all	abortions)	were	predicted	to	occur	on	USFS	lands,	
13	(2%)	to	occur	on	private	lands	and	7	(1%)	to	occur	on	feedgrounds.	
However,	 there	was	 less	variation	 in	 these	numbers	 across	 the	 five	
scenarios	(e.g.,	abortions	on	USFS	lands	varied	from	55	to	70	after	19	
May).	Appendix	 S8	 details	 the	 spatio-	temporal	 distribution	 of	 abor-
tions	across	the	five	scenarios	by	feedground	subpopulation.

4  | DISCUSSION

Our	work	 connects	 variation	 in	 weather	 and	 plant	 phenology	with	
disease	transmission	risk	via	host	movement	at	the	 landscape	scale.	
We	 found	 that	 c.	 700	 abortion	 events	 occur	 per	 year	 in	 our	 study	
region	 and	 that,	 as	 expected,	weather	 and	 phenology—by	 influenc-
ing	elk	movement—alter	the	spatial	distribution	of	springtime	abortion	
events	and	thus	brucellosis	transmission	risk.	During	early	snowmelt	
or	winter	drought	years,	up	to	190	more	abortions	may	occur	within	
grazing	allotments	on	USFS	than	in	heavy	snow	years	(an	increase	of	
85%).	Meanwhile,	the	risk	of	brucellosis	transmission	on	private	lands	
was	relatively	unaffected	by	annual	weather	patterns.

Our	mechanistic	predictions	of	brucellosis	transmission	risk	make	
three	contributions	 to	understanding	disease	 transmission.	First,	we	
predicted	 population-	level	 spatial	 distribution	 based	 on	 individual	
movement	rules	and	environmental	variables	that	vary	both	spatially	
and	temporally.	Such	predictive	capacity	is	rare	(but	see	Merkle,	Potts,	
&	Fortin,	2017),	yet	as	rapid	environmental	change	may	result	in	sig-
nificant	 changes	 to	 global	 ecosystems	 (Barnosky	 et	al.,	 2012),	 it	 is	

F IGURE  3 Predicted	number	of	abortion	events	on	10	April	
per	500	m	pixel	on	the	south-	western	slopes	of	the	Wind	River	
mountain	range,	Wyoming,	including	four	feedgrounds	(denoted	
by	open	circles)	for	2010	(low	snow	year),	2012	(average	snowfall	
year)	and	2014	(heavy	snowfall	year).	Predicted	number	of	abortion	
events	derived	from	multiplying	the	predicted	probability	of	elk	use	
by	adult	and	yearling	female	abundance,	brucellosis	seroprevelance,	
pregnancy	rate	and	the	daily	probability	of	an	abortion	event.	Shading	
represents	hillshade	of	elevation
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imperative	that	we	employ	these	mechanistic	or	process-	based	mod-
els	to	predict	future	ecological	states	that	may	diverge	from	past	con-
ditions	(Gustafson,	2013).	Secondly,	we	have	incorporated	a	spatially	

explicit	model	of	host	behaviour	into	predictions	of	disease	transmis-
sion,	whereby	we	predicted	disease	transmission	risk	based	on	the	un-
derlying	factors	that	influence	host	movement.	Such	an	explicit	bridge	
between	movement	and	disease	ecology	 is	 rare	 (Altizer	et	al.,	2011)	
and,	based	on	our	results,	can	result	 in	useful	predictions	of	disease	
dynamics	in	both	space	and	time.	Finally,	we	provide	a	comprehensive	
mapping	 tool	 for	 identifying	 the	 spatio-	temporal	 risk	 of	 brucellosis	
transmission	across	a	large	landscape.	By	projecting	where	and	when	
hundreds	of	abortion	events	occur	each	year	across	varying	snow	and	
green-	up	dynamics,	we	provide	predictions	of	how	spatial	brucellosis	
risk	will	change	within	and	among	years.

In	this	study,	we	borrow	spatial	modelling	frameworks	from	animal	
ecology	and	apply	them	to	a	chronic	disease	of	wildlife	and	livestock.	
Brucellosis	transmission	occurs	during	spring	when	animals	leave	win-
ter	range	and	migrate	to	higher	elevations	 (Cross	et	al.,	2015;	Jones	
et	al.,	2014),	and	our	results	demonstrate	how	annual	weather	variabil-
ity	can	influence	the	phenology	of	host	movement	and	thus	the	spatial	
dynamics	of	brucellosis	transmission	risk	(Figures	4	and	5).	As	climate	
change	continues	to	alter	weather	patterns,	host	movements	and	spa-
tial	distribution	will	 inevitably	change,	 resulting	 in	novel	disease	dy-
namics	in	the	future.	Predictive	models,	such	as	the	SSF	(Fortin	et	al.,	
2005)	and	master	equation	(Potts	et	al.,	2014)	frameworks,	represent	
an	advancement	in	how	animal	distribution	is	predicted	in	space	and	
time,	and	helps	researchers	and	managers	assess	how	climate	change	
might	alter	disease	dynamics	or	other	ecological	dynamics	 in	unpre-
dictable	ways.

Our	 model,	 however,	 did	 not	 include	 a	 temporal	 transmission	
component,	and	as	a	result,	does	not	allow	for	predictions	of	disease	
dynamics	across	consecutive	years.	For	instance,	based	upon	our	spa-
tial	within-	year	analyses,	we	found	that	c.	300	abortion	events	could	
occur	 on	 feedgrounds	 during	 a	 heavy	 snow	 year	 compared	 to	 just	
over	100	in	an	early	snowmelt	or	winter	drought	year.	This	high	num-
ber	of	abortion	events	occurring	on	feedgrounds	during	heavy	snow	
years	 is	 likely	 to	enhance	disease	 transmission	within	 the	elk	popu-
lation	 (Creech	et	al.,	 2012;	Cross	et	al.,	 2010;	Maichak	et	al.,	 2009),	
which	may	alter	seroprevelance	in	years	following	heavy	winter	snow.	
Coupling	mechanistic	models	of	host	movement	with	temporal	models	
of	transmission	is	an	obvious	next	step	in	this	system	and	within	the	
broader	disease	ecology	field.

Our	 modelling	 framework	 provides	 information	 for	 researchers	
and	managers	to	prioritize	management	and	conservation	actions	and	
identify	where	and	when	their	implementation	would	be	most	effec-
tive.	 In	 our	 case,	 managing	 brucellosis	 comingling	 risk	 between	 elk	
and	 cattle	 during	 the	 abortion	 season	 is	 the	main	management	op-
tion	for	wildlife	and	livestock	managers	(Kilpatrick	et	al.,	2009;	Proffitt	
et	al.,	2011),	because	other	available	options	to	eradicate	disease	 in	
wildlife	 populations	 (i.e.,	 test	 and	 slaughter,	whole-	herd	 culling	 and	
vaccination)	 do	 not	 appear	 to	work,	 or	 are	 not	 logistically	 or	 politi-
cally	possible	for	brucellosis	management	in	the	GYE	(Bienen	&	Tabor,	
2006).	Available	management	 actions	 include	 hazing	 elk	 away	 from	
cattle	feeding	areas,	abandoning	grazing	allotments	with	high	risk	of	
comingling,	and	altering	cattle	 turnout	dates	after	risk	of	brucellosis	
transmission	has	subsided.	Our	maps	of	the	number	of	abortion	events	

F IGURE  4 Predicted	number	of	abortion	events	per	year	
occurring	on	US	Forest	Service	(USFS)	lands	(a),	within	2.5	km	of	
feedgrounds	(b),	and	on	private	lands	(c)	during	the	heavy	snow	year	
of	2014,	average	snow	year	of	2012,	low	snow	year	of	2010,	as	
well	as	a	14-		and	28-	day	early	snowmelt	or	winter	drought	year	in	
Wyoming.	Cumulative	abortion	events	were	derived	from	multiplying	
the	predicted	probability	of	elk	use	by	adult	and	yearling	female	
abundance,	brucellosis	seroprevelance,	pregnancy	rate	and	the	daily	
probability	of	an	abortion	event
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per	day	provide	the	metrics	to	evaluate	successful	implementation	of	
these	 management	 actions.	 For	 example,	 cattle	 grazing	 allotments	
on	USFS	 lands	 near	 feedgrounds	 currently	 do	 not	 open	 for	 grazing	
until	15	June	to	minimize	brucellosis	transmission	risk.	Yet,	our	work	
suggests	that	there	is	still	some	risk	of	brucellosis	transmission	after	
this	date	 (Figure	5).	Given	how	elk	movements	 in	spring	vary	widely	
(up	to	a	month	or	more)	due	to	spring	phenology	(Figure	3),	livestock	
regulatory	health	officials	and	cattle	producers	can	use	our	risk	assess-
ment	maps	to	assess	the	best	turnout	date	both	on	an	allotment-	by-	
allotment	basis,	and	on	a	year-	to-	year	basis	as	snow	conditions	vary.

Our	 results	 suggest	 that	 regional	variation	 in	brucellosis	 trans-
mission	risk—due	to	variation	in	elk	density	and	brucellosis	seropre-
velance	across	feedground	subpopulations	 (Appendix	S6)—is	 larger	
than	that	caused	by	annual	weather	variability.	For	instance,	general	
trends	 in	 brucellosis	 transmission	 risk	 for	 each	 weather	 scenario	
are	 fairly	 similar	 among	 feedground	 subpopulations,	 and	 weather	

variability	 does	 not	 affect	 transmission	 risk	 differently	 among	
feedground	subpopulations	(Appendix	S8).	Thus,	although	low	snow	
years	result	 in	fewer	abortions	on	feedgrounds	and	more	on	USFS	
and	private	lands,	it	is	most	important	for	wildlife	and	livestock	man-
agers	to	focus	on	allocating	management	resources	to	specific	areas	
with	the	highest	brucellosis	transmission	risk.	Further,	we	found	rel-
atively	 little	difference	 in	the	predicted	number	of	abortion	events	
on	private	lands	across	the	weather	scenarios	(Figure	4c).	These	re-
sults	 suggest	 that	 although	cattle	on	private	 lands	have	 some	 risk	
of	 contacting	 aborted	 elk	 foetuses,	 adjusting	 cattle	 turnout	 dates	
on	USFS	lands	should	result	in	the	largest	reductions	in	brucellosis	
transmission	risk.

We	assumed	that	the	predictor	variables	of	the	SSF,	elk	population	
size,	 seroprevelance,	 abortion	 timing,	 and	 pregnancy	 rates	were	 all	
measured	without	error.	In	addition,	we	did	not	assess	the	estimation	
uncertainty	 in	 the	space-	use	predictions.	Thus,	our	 inference	should	

F IGURE  5 Predicted	number	of	abortion	events	per	day	across	landownership	in	Wyoming	based	on	green-	up	and	supplemental	feeding	
end-	date	data	for	the	heavy	snow	year	of	2014	(a),	average	snow	year	of	2012	(b),	low	snow	year	of	2010	(c),	as	well	as	a	14-		(d)	and	28-	day	(e)	
early	snowmelt	or	winter	drought	year.	Vertical	dotted	line	represents	19	May—the	predominant	turnout	date	on	US	Forest	Service	lands	(15	
June)	minus	26	days	to	take	into	account	how	long	brucellosis	can	persist	after	an	abortion	event.	Number	of	abortion	events	was	calculated	by	
multiplying	the	predicted	probability	of	elk	use	by	adult	and	yearling	female	abundance,	brucellosis	seroprevelance,	pregnancy	rate	and	the	daily	
probability	of	an	abortion	event
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be	used	with	caution	as	our	predictions	do	not	include	confidence	in-
tervals.	Quantifying	 error	 in	 our	 predictions	 is	 an	 important	 avenue	
for	further	work	(Hefley	et	al.,	2017)	as	it	would	highlight	to	both	re-
searchers	and	managers	where	research	efforts	could	be	targeted	to	
minimize	the	uncertainty	in	predictions	of	brucellosis	transmission	risk	
in	the	most	cost-	effective	manner.	Uncertainty	could	be	estimated	by	
drawing	different	parameter	sets	given	the	mean	and	variance	of	pa-
rameter	estimates	from	the	SSF	and	then	deriving	the	resulting	space	
use.	Error	estimates	could	then	be	compiled	on	a	cell-	by-	cell	basis	so	
that	prediction	error	could	be	assessed	in	both	space	and	time.	Such	
an	exercise	would	be	computationally	challenging,	but	 is	 likely	to	be	
feasible	in	the	foreseeable	future.	Nonetheless,	we	examined	how	well	
the	overall	mean	space-	use	predictions	represent	the	observed	move-
ment	 patterns	 of	 collared	 elk	 and	 found	 that	 our	 space-	use	 predic-
tions	accurately	forecasted	the	location	of	observed	elk	GPS	locations	
(Appendix	S5).

In	this	work,	we	have	bridged	the	movement	and	disease	ecology	
fields	so	 that	spatio-	temporal	predictions	of	 future	ecological	 states	
are	 possible.	 Coupling	 predictions	 of	 host	 space-	use	 with	 disease	
dynamics	at	the	 individual	and	population	scale	provided	a	new	link	
between	mechanistic	movement	models	 and	 predictions	 of	 disease	
transmission	 risk.	 Predicting	 such	 variation	 in	 host	 distribution	 and	
disease	transmission	risk	provides	a	means	to	test	predictions	of	how	
small-	scale	 environmental	 changes	 can	 result	 in	 large-	scale	 changes	
in	 animal	 distribution	 and	 disease	 spread,	while	 enabling	managers	
to	identify	where	proactive	management	can	mitigate	risks	posed	by	
	mobile	disease	hosts.
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